新学网首页 语文 数学 物理 化学 作文 感动 心灵鸡汤 人生感悟 名著知识 成语大全 唐诗 宋词 名人名言 英文词典 登录

三角形的高、中线与角平分线 教学设计

§7.1.2三角形的高、中线与角平分线

【教学重点与难点】

教学重点:1.了解三角形的高、中线与角平分线的概念.

2.能利用三角形的高、中线和角平分线的性质进行简单计算.

教学难点:1.能用自己的语言说出三角形高、中线与角平分线的概念.

2.熟练运用三角形的高、中线和角平分线的性质进行有关计算.

【教学目标】

1.了解三角形的高、中线与角平分线的概念.毛

2.准确区分三角形的高、中线与角平分线.

3.能够独立完成与三角形的高、中线和角平分线有关的计算.

【教学方法】

以学生实践为主,在已学内容的基础上进行更进一步的探究,从而发现新的结论,以此培养学生发现和解决问题的能力.

【教学过程】

一.回顾旧知 提出问题

(设计说明:通过对已学知识的回忆来巩固基础知识的运用,并借此引入新课.)

问题1:数一数,图中共有多少个三角形?请将它们全部用符号表示出来.

学生回答:图中共有5个三角形.

它们分别是:△ABC、△ABD、△ACD、

△ADE、△CDE.

问题2:利用长为3、5、6、9的四条线段可以组成几个三角形?为什么?

学生回答:可以组成2个三角形.

从四条线段中任选三条组成三角形,共有四种选法:①3、5、6,②3、5、9,③3、6、9,④5、6、9,其中,满足“三角形两边之和大于第三边”的只有第①、④这两组.

问题3:利用△ABC的一条边长为4cm,面积是24 cm2这两个条件,你能求出什么结论?

学生回答:能够求出的△ABC高是3 cm.

(教学说明:教师利用问题让学生回顾所学知识,特别是问题3内容的变化,可以引起学生注意和疑问,将学生的思路引入与三角形有关的线段中.)

二、探索新知 解决问题

1.通过作图探索三角形的高

(设计说明:通过经历画三角形的高的过程,使学生在头脑中留下清晰形象,并能结合这些具体形象叙述高的定义.)

问题1:你能画出下列三角形的所有的高吗?

学生画出三角形所有的高,观察这些高的特点.

问题2:根据画高的过程说明什么叫三角形的高?

学生讨论回答,师完善并归纳:从三角形的一个顶点向它的对边所在直线作垂线,连接顶点和垂足之间的线段称为三角形的高.

问题3:在这些三角形中你能画出几条高?它们有什么相同点和不同点?

学生回答:每个三角形都能画出三条高.

相同点是:三角形的三条高交于同一点.

文本框: 不同点是:锐角三角形的高交于三角形内一点,直角三角形的高交于直角的顶 点,钝角三角形的高交于三角形外一点.

问题4:如图所示,如果AD是△ABC的高,你能得到哪些结论?

学生回答:如果AD是△ABC的高,则有:

AD⊥BC于D,∠ADB=∠ADC=90°.

(教学说明:三角形的高的概念在书中并没有具体给出,所以学生在归纳定义的时候会有一定的困难.那么在授课时就要留给学生充足的时间进行思考和讨论,教师可以引导学生先利用具体图形进行定义,再由具体图形中抽出准确、简明的语言,同时要强调:三角形的高是一条线段.在问题3中,有些学生会认为直角三角形只能画出斜边上的一条高,这时教师要给予讲解,说明另外两条直角边也是这个直角三角形的高.而问题4是要将三角形的高用符号语言表示出来,这是为以后学习证明打基础.)

2.类比探索三角形的高的过程探索三角形的中线

(设计说明:利用类比的方法进行探索,可以留给学生更多思考与探究的空间,有得于拓展学生的思维,培养学生自主探究的学习习惯.)

问题1:如图,如果点C是线段AB的中点,你能得到什么结论?

文本框: 学生回答:

问题2:如图,如果点D是线段BC的中点,那么线段AD就称为△ABC 的中线.类比三角形的高的概念,试说明什么叫三角形的中线?由三角形的中线能得到什么结论?

学生回答:三角形中连结一个顶点和它对边中的线段称为三角形的中线.

如果线段AD是△ABC的中线,那么

问题3:画出下列三角形的所有的中线,并讨论说明三角形的中线有什么特点?

学生回答:无论哪种三角形,它们都有三条中线,并且这三条中线都会交于一点,这一点都在三角形的内部.

文本框: 问题4:如图所示,在△ABC中,AD是△ABC的中线,AE是△ABC的高.试判断△ABD和△ACD的面积有什么关系?为什么?

学生回答:△ABD和△ACD的面积相等.理由:

∵AD是△ABC的中线

∴BD=CD

∵AE既是△ABD的高,也是△ACD的高

∴△ABD和△ACD的面积相等.

问题5:通过问题4你能发现什么规律?

学生回答:三角形的中线将三角形的面积平均分成两份.

(教学说明:让学生利用对三角形的高的探究过程,利用类比的方法进行对三角形的中线的探究.“类比思想”是数学学习中常用的一种思想,所以在授课过程中要让学生体会运用这种思想进行探究的好处,培养自主探究的能力.问题4和问题5的设立是对三角形中线的知识进行扩展,并不是教科书中的内容,但能够使学生更深刻地体会三角形中线的特点,同时,根据课堂时间的需要,对于这两个问题的讲授,教师可以自行调节.)

3.通过类比的方法探究三角形的角平分线

文本框: (设计说明:再次使用类比的方法进行探究,让学生经历动脑思考探索的过程,对知识有进一步的理解.)

问题1:如图,若OC是∠AOB的平分线,你能得到什么结论?

学生回答:

问题2:如图,在△ABC中,如果∠BAC的平分线AD交BC边于点D,我们就称AD是△ABC的角平分线.类比探索三角形的高和中线的过程,你能得到哪些结论?三角形的角平分线与角的角平分线相同吗?为什么?

学生回答:三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段称为三角形的角平分线.

三角形有三条角平分线,并且这三条角平分线在三角形内交于一点.

如果AD是△ABC的角平分线,那么就有

三角形的角平分线与一个角的角平分线不一样,三角形的角平分线是一条线段,有长度,而角的平分线是一条射线,没有长度.

(教学说明:对于三角形的角平分线的探究,教师要给学生足够的空间和时间,如果漏下了哪一点没有探究到,教师可以给予提示.)

三、巩固训练 熟练技能

(设计说明:通过比较练习,帮助学生掌握三角形的高、中线和角平分线的基本性质,熟练基本技能.)

练习1:如图,在△ABC中画出这个三角形的高BD,中线CE和角平分线BF.

文本框:

文本框:

练习2:如图,已知AD,BE,CF都是△ABC的三条中线.

则AE= = ,BC=2 ,AF= .

学生:CE,AC,BD或CD,BF.

文本框: 练习3:如图,已知AD,BE,CF都是△ABC的三条角平分线.

则∠1= ,∠2= =

∠ABC=2 .

学生:∠BAC,∠3,∠ACB,∠4或∠ABE.

练习3:如图,△ABC中,AC=12 cm,BC=18 cm,△ABC的高AD与BE的比是多少?

学生:解:由三角形的面积公式得

所以有

解得

(教学说明:练习的设计以基础知识为主,要让学生独立完成.而练习3是所学知识的一个应用,要让学生有利用面积求高的意识,开阔思路.)

四、反思总结 情意发展

(设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。)

问题1:本节课你学习了什么?

问题2:本节课你有哪些收获?

问题3:通过今天的学习,你想进一步探究的问题是什么?

(教学说明:以上设计再次通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,纳入自己的知识结构)

五、课堂小结

1.本节主要学习三角形的高、中线和角平分的概念与性质.

2.本节涉及到的思想方法是类比思想.

3.注意的问题:

(1)每个三角形都有三条高,三条中线和三条角平分线.

(2)三角形的三条高交于一点,但锐角三角形的高交于三角形内一点,直角三角形的高交于直角的顶点,钝角三角形的高交于三角形外一点.三角形的三条中线交于三角形内一点,三角形的三条角平分线也交于三角形内的一点.

(3)三角形的高、中线和角平分线都是线段.

(4)能将三角形的面积平均分成两部分的线是三角形的中线.

六、布置作业

1、课本69页习题7.1的3、4;

(教学说明:及时作业是巩固课堂学习知识的重要环节,练习题是对本节的基础知识进行巩固.)

七、拓展练习

(设计说明:在学习基础知识的基础上,拓展学生思维,提高学生的学习兴趣。)

练习1:如图,在直角三角形中,AC⊥BC,AC=8,BC=6,AB=10.

求顶点C到边AB的高.

学生:解:设顶点C到边AB的高为h,由三角形的面积公式可得

所以有

解得:h=4.8

文本框: 所以,顶点C到边AB的高为4.8.

练习2:如图,在△ABC中,AD是角平分线,DE//AC,DF//AB.试判断∠3和∠4的关系,并说明理由.

学生:解:∠3=∠4.

理由:∵AD平分∠BAC,

∴∠1=∠2,

又∵DE//AC,DF//AB,

∴∠1=∠4,∠2=∠3

∴∠3=∠4.

练习3:利用所学知识将三角形分成面积相等的四部分.(至少画出4种)

学生:利用三角形中线的性质可得

……

(教学说明:这三个练习是三角形的高、中线和角平分线的应用,特别是练习2,加入了平行线的性质,所以教师应给学生一定的思考时间,并让学生充分的合作交流,共同解决问题.)

【评价与反思】

本节内容是七年级数学第七章的第二节,主要介绍三角形的高、中线和角平分线的概念及基本性质,虽是一节概念教学课,但重点却在性质的应用上.

本节的知识内容较多,不仅要让学生了解三角形的高、中线和角平分线的概念,还要对这三种线段的表示方法和性质进行探究.在教学过程中,教师引导学生从熟悉的知识入手,并利用类比的方法自主探索新的知识.在教学过程中,教师应让学生以独立思考为主,并在必要时进行互助交流,让学生经历得出结论的过程,培养学生解决问题的能力.

在教学设计上,关注学生自主学习、合作交流的过程,让学生体会类比思想在探索新知中的作用,使学生在亲自经历整个探究过程后,能够对三角形的高、中线和角平分线的概念及性质有更好的理解,在获得数学活动经验的同时,提高探究、发现和创新的能力.

请收藏到:

中考 高考名著

常用成语

新学网 Copyright (C) 2010-2012 版权所有 All Rights Reserved. 豫ICP备09006221号